Study of Different Chitosan/Sodium Carboxymethyl Cellulose Proportions in the Development of Polyelectrolyte Complexes for the Sustained Release of Clarithromycin from Matrix Tablets

Guarnizo-Herrero, Victor; Torrado-Salmeron, Carlos; Torres -Pavón, Norma Sofía; Torrado, Guillermo; Morales, Javier; Torrado-Santiago, Santiago

Abstract

This study investigated the combination of different proportions of cationic chitosan and anionic carboxymethyl cellulose (CMC) for the development of polyelectrolyte complexes to be used as a carrier in a sustained-release system. Analysis via scanning electron microscopy (SEM) Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD) confirmed ionic interactions occur between the chitosan and carboxymethyl cellulose chains, which increases drug entrapment. The results of the dissolution study in acetate buffer (pH 4.2) showed significant increases in the kinetic profiles of clarithromycin for low proportions of chitosan/carboxymethyl cellulose tablets, while the tablets containing only chitosan had high relaxation of chitosan chains and disintegrated rapidly. The Korsmeyer–Peppas kinetic model for the different interpolymer complexes demonstrated that the clarithromycin transport mechanism was controlled by Fickian diffusion. These results suggest that the matrix tablets with different proportions of chitosan/carboxymethyl cellulose enhanced the ionic interaction and enabled the prolonged release of clarithromycin

Más información

Título de la Revista: POLYMERS
Volumen: 13
Número: 16
Editorial: MDPI
Fecha de publicación: 2021
Página de inicio: 2813
Idioma: Inglés
URL: https://doi.org/10.3390/polym13162813