“A Bias Recognized Is a Bias Sterilized”: The Effects of a Bias in Forecast Evaluation

Hardy, Nicolas

Abstract

Are traditional tests of forecast evaluation well behaved when the competing (nested) model is biased? No, they are not. In this paper, we show analytically and via simulations that, under the null hypothesis of no encompassing, a bias in the nested model may severely distort the size properties of traditional out-of-sample tests in economic forecasting. Not surprisingly, these size distortions depend on the magnitude of the bias and the persistency of the additional predictors. We consider two different cases: (i) There is both in-sample and out-of-sample bias in the nested model. (ii) The bias is present exclusively out-of-sample. To address the former case, we propose a modified encompassing test (MENC-NEW) robust to a bias in the null model. Akin to the ENC-NEW statistic, the asymptotic distribution of our test is a functional of stochastic integrals of quadratic Brownian motions. While this distribution is not pivotal, we can easily estimate the nuisance parameters. To address the second case, we derive the new asymptotic distribution of the ENC-NEW, showing that critical values may differ remarkably. Our Monte Carlo simulations reveal that the MENC-NEW (and the ENC-NEW with adjusted critical values) is reasonably well-sized even when the ENC-NEW (with standard critical values) exhibits rejections rates three times higher than the nominal size

Más información

Título de la Revista: Mathematics
Volumen: 10
Fecha de publicación: 2022
Página de inicio: 171
URL: https://www.mdpi.com/2227-7390/10/2/171
Notas: WOS