A Novel Framework for Generating Personalized Network Datasets for NIDS Based on Traffic Aggregation
Keywords: network security, machine learning, intrusion detection, unbalanced dataset, traffic generation, botnet detection
Abstract
In this paper, we addressed the problem of dataset scarcity for the task of network intrusion detection. Our main contribution was to develop a framework that provides a complete process for generating network traffic datasets based on the aggregation of real network traces. In addition, we proposed a set of tools for attribute extraction and labeling of traffic sessions. A new dataset with botnet network traffic was generated by the framework to assess our proposed method with machine learning algorithms suitable for unbalanced data. The performance of the classifiers was evaluated in terms of macro-averages of F1-score (0.97) and the Matthews Correlation Coefficient (0.94), showing a good overall performance average.
Más información
Título de la Revista: | SENSORS |
Volumen: | 22 |
Número: | 5 |
Editorial: | MDPI |
Fecha de publicación: | 2022 |
Página de inicio: | 1847 |
Página final: | 1847 |
Idioma: | English |
URL: | https://www.mdpi.com/1424-8220/22/5/1847/htm |
Notas: | WOS Core Collection |