Revisiting the Dissimilarity Representation in the Context of Regression

García, V.; Sánchez, J.S.; Martínez-Peláez, R.; Méndez-González, C.

Keywords: regression, linear models, Data complexity, dissimilarity representation

Abstract

In machine learning, a natural way to represent an instance is by using a feature vector. However, several studies have shown that this representation may not accurately characterize an object. For classification problems, the dissimilarity paradigm has been proposed as an alternative to the standard feature-based approach. Encoding each object by pairwise dissimilarities has been demonstrated to improve the data quality because it mitigates some complexities such as class overlap, small disjuncts, and low-sample size. However, its suitability and performance when applied to regression problems have not been fully explored. This study redefines the dissimilarity representation for regression. To this end, we have carried out an extensive experimental evaluation on 34 datasets using two linear regression models. The results show that the dissimilarity approach decreases the error rates of both the traditional linear regression and the linear model with elastic net regularization, and it also reduces the complexity of most regression datasets.

Más información

Título de la Revista: IEEE ACCESS
Volumen: 9
Editorial: IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Fecha de publicación: 2021
Página de inicio: 157043
Página final: 157051
Idioma: English
URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9624949
Notas: WOS Core Collection