Orthogonality of Jack polynomials in superspace

Desrosiers, P; Lapointe, L; Mathieu, P

Abstract

Jack polynomials in superspace, orthogonal with respect to a "combinatorial" scalar product, are constructed. They are shown to coincide with the Jack polynomials in superspace, orthogonal with respect to an "analytical" scalar product, introduced in [P. Desrosiers, L. Lapointe, P. Mathieu, Jack polynomials in superspace, Comm. Math. Phys. 242 (2003) 331-360] as eigenfunctions of a supersymmetric quantum mechanical many-body problem. The results of this article rely on generalizing (to include an extra parameter) the theory of classical symmetric functions in superspace developed recently in [P. Desrosiers, L. Lapointe, P. Mathieu, Classical symmetric functions in superspace, J. Algebraic Combin. 24 (2006) 209-238]. © 2006 Elsevier Inc. All rights reserved.

Más información

Título según WOS: Orthogonality of Jack polynomials in superspace
Título según SCOPUS: Orthogonality of Jack polynomials in superspace
Título de la Revista: ADVANCES IN MATHEMATICS
Volumen: 212
Número: 1
Editorial: ACADEMIC PRESS INC ELSEVIER SCIENCE
Fecha de publicación: 2007
Página de inicio: 361
Página final: 388
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0001870806003446
DOI:

10.1016/j.aim.2006.10.004

Notas: ISI, SCOPUS