Orthogonality of Jack polynomials in superspace
Abstract
Jack polynomials in superspace, orthogonal with respect to a "combinatorial" scalar product, are constructed. They are shown to coincide with the Jack polynomials in superspace, orthogonal with respect to an "analytical" scalar product, introduced in [P. Desrosiers, L. Lapointe, P. Mathieu, Jack polynomials in superspace, Comm. Math. Phys. 242 (2003) 331-360] as eigenfunctions of a supersymmetric quantum mechanical many-body problem. The results of this article rely on generalizing (to include an extra parameter) the theory of classical symmetric functions in superspace developed recently in [P. Desrosiers, L. Lapointe, P. Mathieu, Classical symmetric functions in superspace, J. Algebraic Combin. 24 (2006) 209-238]. © 2006 Elsevier Inc. All rights reserved.
Más información
Título según WOS: | Orthogonality of Jack polynomials in superspace |
Título según SCOPUS: | Orthogonality of Jack polynomials in superspace |
Título de la Revista: | ADVANCES IN MATHEMATICS |
Volumen: | 212 |
Número: | 1 |
Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
Fecha de publicación: | 2007 |
Página de inicio: | 361 |
Página final: | 388 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0001870806003446 |
DOI: |
10.1016/j.aim.2006.10.004 |
Notas: | ISI, SCOPUS |