Wavelet entropy of stochastic processes
Abstract
We compare two different definitions for the wavelet entropy associated to stochastic processes. The first one, the normalized total wavelet entropy (NTWS) family [S. Blanco, A. Figliola, R.Q. Quiroga, O.A. Rosso, E. Serrano, Time-frequency analysis of electroencephalogram series, III. Wavelet packets and information cost function, Phys. Rev. E 57 (1998) 932-940; O.A. Rosso, S. Blanco, J. Yordanova, V. Kolev, A. Figliola, M. Schürmann, E. Başar, Wavelet entropy: a new tool for analysis of short duration brain electrical signals, J. Neurosci. Method 105 (2001) 65-75] and a second introduced by Tavares and Lucena [Physica A 357(1) (2005) 71-78]. In order to understand their advantages and disadvantages, exact results obtained for fractional Gaussian noise (- 1 < α < 1) and fractional Brownian motion (1 < α < 3) are assessed. We find out that the NTWS family performs better as a characterization method for these stochastic processes. © 2007 Elsevier B.V. All rights reserved.
Más información
Título según WOS: | Wavelet entropy of stochastic processes |
Título según SCOPUS: | Wavelet entropy of stochastic processes |
Título de la Revista: | PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS |
Volumen: | 379 |
Número: | 2 |
Editorial: | ELSEVIER SCIENCE BV |
Fecha de publicación: | 2007 |
Página de inicio: | 503 |
Página final: | 512 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S037843710700115X |
DOI: |
10.1016/j.physa.2006.12.057 |
Notas: | ISI, SCOPUS |