Wavelet entropy of stochastic processes

Zunino, L; Perez, DG; Garavaglia M.; Rosso, OA

Abstract

We compare two different definitions for the wavelet entropy associated to stochastic processes. The first one, the normalized total wavelet entropy (NTWS) family [S. Blanco, A. Figliola, R.Q. Quiroga, O.A. Rosso, E. Serrano, Time-frequency analysis of electroencephalogram series, III. Wavelet packets and information cost function, Phys. Rev. E 57 (1998) 932-940; O.A. Rosso, S. Blanco, J. Yordanova, V. Kolev, A. Figliola, M. Schürmann, E. Başar, Wavelet entropy: a new tool for analysis of short duration brain electrical signals, J. Neurosci. Method 105 (2001) 65-75] and a second introduced by Tavares and Lucena [Physica A 357(1) (2005) 71-78]. In order to understand their advantages and disadvantages, exact results obtained for fractional Gaussian noise (- 1 < α < 1) and fractional Brownian motion (1 < α < 3) are assessed. We find out that the NTWS family performs better as a characterization method for these stochastic processes. © 2007 Elsevier B.V. All rights reserved.

Más información

Título según WOS: Wavelet entropy of stochastic processes
Título según SCOPUS: Wavelet entropy of stochastic processes
Título de la Revista: PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS
Volumen: 379
Número: 2
Editorial: ELSEVIER SCIENCE BV
Fecha de publicación: 2007
Página de inicio: 503
Página final: 512
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S037843710700115X
DOI:

10.1016/j.physa.2006.12.057

Notas: ISI, SCOPUS