On the dynamics of mechanical systems with homogeneous polynomial potentials of degree 4

Falconi M.; Lacomba, EA; Vidal C.

Abstract

In this work we study mechanical systems defined by homogeneous polynomial potentials of degree 4 on the plane, when the potential has a definite or semi-definite sign and the energy is non-negative. We get a global description of the flow for the nonnegative potential case. Some partial results are obtained for the more complicated case of non-positive potentials. In contrast with the non-negative case, we prove that the flow is complete and we find special periodic solutions, whose stability is analyzed. By using results from Ziglin theory following Morales-Ruiz and Ramis we check the non-integrability of the Hamiltonian systems in terms of the potential parameters. © Springer-Verlag Berlin Heidelberg 2007.

Más información

Título según WOS: On the dynamics of mechanical systems with homogeneous polynomial potentials of degree 4
Título según SCOPUS: On the dynamics of mechanical systems with homogeneous polynomial potentials of degree 4
Título de la Revista: BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY
Volumen: 38
Número: 2
Editorial: SPRINGER HEIDELBERG
Fecha de publicación: 2007
Página de inicio: 301
Página final: 333
Idioma: English
URL: http://link.springer.com/10.1007/s00574-007-0048-z
DOI:

10.1007/s00574-007-0048-z

Notas: ISI, SCOPUS