Conformal symmetry of an extended Schrodinger equation and its relativistic origin
Abstract
In this paper two things are done. We first prove that an arbitrary power p of the Schrödinger Lagrangian in arbitrary dimension always enjoys the non-relativistic conformal symmetry. The implementation of this symmetry on the dynamical field involves a phase term as well as a conformal factor that depends on the dimension and on the exponent. This non-relativistic conformal symmetry is shown to have its origin on the conformal isometry of the power p of the Klein-Gordon Lagrangian in one higher dimension which is related to the phase of the complex scalar field. © 2007 IOP Publishing Ltd.
Más información
Título según WOS: | Conformal symmetry of an extended Schrodinger equation and its relativistic origin |
Título según SCOPUS: | Conformal symmetry of an extended Schrödinger equation and its relativistic origin |
Título de la Revista: | JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL |
Volumen: | 40 |
Número: | 21 |
Editorial: | IOP PUBLISHING LTD |
Fecha de publicación: | 2007 |
Página de inicio: | 5717 |
Página final: | 5723 |
Idioma: | English |
URL: | http://stacks.iop.org/1751-8121/40/i=21/a=017?key=crossref.2106a7b4186b7a17ef167a5312e5c785 |
DOI: |
10.1088/1751-8113/40/21/017 |
Notas: | ISI, SCOPUS |