Conformal symmetry of an extended Schrodinger equation and its relativistic origin

Hassaine M.

Abstract

In this paper two things are done. We first prove that an arbitrary power p of the Schrödinger Lagrangian in arbitrary dimension always enjoys the non-relativistic conformal symmetry. The implementation of this symmetry on the dynamical field involves a phase term as well as a conformal factor that depends on the dimension and on the exponent. This non-relativistic conformal symmetry is shown to have its origin on the conformal isometry of the power p of the Klein-Gordon Lagrangian in one higher dimension which is related to the phase of the complex scalar field. © 2007 IOP Publishing Ltd.

Más información

Título según WOS: Conformal symmetry of an extended Schrodinger equation and its relativistic origin
Título según SCOPUS: Conformal symmetry of an extended Schrödinger equation and its relativistic origin
Título de la Revista: JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL
Volumen: 40
Número: 21
Editorial: IOP PUBLISHING LTD
Fecha de publicación: 2007
Página de inicio: 5717
Página final: 5723
Idioma: English
URL: http://stacks.iop.org/1751-8121/40/i=21/a=017?key=crossref.2106a7b4186b7a17ef167a5312e5c785
DOI:

10.1088/1751-8113/40/21/017

Notas: ISI, SCOPUS