Standing waves for supercritical nonlinear Schrodinger equations

Dávila J.; Del Pino M.; Musso, M; Wei, JC

Abstract

Let V (x) be a non-negative, bounded potential in RN, N ≥ 3 and p supercritical, p > frac(N + 2, N - 2). We look for positive solutions of the standing-wave nonlinear Schrödinger equation Δ u - V (x) u + up = 0  in  RN, with u (x) → 0 as | x | → + ∞. We prove that if V (x) = o (| x |-2) as | x | → + ∞, then for N ≥ 4 and p > frac(N + 1, N - 3) this problem admits a continuum of solutions. If in addition we have, for instance, V (x) = O (| x |- μ) with μ > N, then this result still holds provided that N ≥ 3 and p > frac(N + 2, N - 2). Other conditions for solvability, involving behavior of V at ∞, are also provided. © 2007 Elsevier Inc. All rights reserved.

Más información

Título según WOS: Standing waves for supercritical nonlinear Schrodinger equations
Título según SCOPUS: Standing waves for supercritical nonlinear Schrödinger equations
Título de la Revista: JOURNAL OF DIFFERENTIAL EQUATIONS
Volumen: 236
Número: 1
Editorial: ACADEMIC PRESS INC ELSEVIER SCIENCE
Fecha de publicación: 2007
Página de inicio: 164
Página final: 198
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S002203960700037X
DOI:

10.1016/j.jde.2007.01.016

Notas: ISI, SCOPUS