Multiresolution schemes for strongly degenerate parabolic equations in one space dimension

Burger, R; Kozakevicius A.; Sepúlveda M.

Abstract

An adaptive finite volume method for one-dimensional strongly degenerate parabolic equations is presented. Using an explicit conservative numerical scheme with a third-order Runge-Kutta method for the time discretization, a third-order ENO interpolation for the convective term, and adding a conservative discretization for the diffusive term, we apply the multiresolution method combining two fundamental concepts: the switch between central interpolation or exact computing of numerical flux and a thresholded wavelet transform applied to cell averages of the solution to control the switch. Applications to mathematical models of sedimentation-consolidation processes and traffic flow with driver reaction, which involve different types of boundary conditions, illustrate the computational efficiency of the new method. © 2007 Wiley Periodicals, Inc.

Más información

Título según WOS: Multiresolution schemes for strongly degenerate parabolic equations in one space dimension
Título según SCOPUS: Multiresolution schemes for strongly degenerate parabolic equations in one space dimension
Título de la Revista: NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS
Volumen: 23
Número: 3
Editorial: WILEY-BLACKWELL
Fecha de publicación: 2007
Página de inicio: 706
Página final: 730
Idioma: English
URL: http://doi.wiley.com/10.1002/num.20206
DOI:

10.1002/num.20206

Notas: ISI, SCOPUS - WOS