Multiresolution schemes for strongly degenerate parabolic equations in one space dimension
Abstract
An adaptive finite volume method for one-dimensional strongly degenerate parabolic equations is presented. Using an explicit conservative numerical scheme with a third-order Runge-Kutta method for the time discretization, a third-order ENO interpolation for the convective term, and adding a conservative discretization for the diffusive term, we apply the multiresolution method combining two fundamental concepts: the switch between central interpolation or exact computing of numerical flux and a thresholded wavelet transform applied to cell averages of the solution to control the switch. Applications to mathematical models of sedimentation-consolidation processes and traffic flow with driver reaction, which involve different types of boundary conditions, illustrate the computational efficiency of the new method. © 2007 Wiley Periodicals, Inc.
Más información
| Título según WOS: | Multiresolution schemes for strongly degenerate parabolic equations in one space dimension |
| Título según SCOPUS: | Multiresolution schemes for strongly degenerate parabolic equations in one space dimension |
| Título de la Revista: | NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS |
| Volumen: | 23 |
| Número: | 3 |
| Editorial: | Wiley |
| Fecha de publicación: | 2007 |
| Página de inicio: | 706 |
| Página final: | 730 |
| Idioma: | English |
| URL: | http://doi.wiley.com/10.1002/num.20206 |
| DOI: |
10.1002/num.20206 |
| Notas: | ISI, SCOPUS - WOS |