Exact probability distribution for the Bernoulli-Malthus-Verhulst model driven by a multiplicative colored noise
Abstract
We report an exact result for the calculation of the probability distribution of the Bernoulli-Malthus-Verhulst model driven by a multiplicative colored noise. We study the conditions under which the probability distribution of the Malthus-Verhulst model can exhibit a transition from a unimodal to a bimodal distribution depending on the value of a critical parameter. Also we show that the mean value of x(t) in the latter model always approaches asymptotically the value 1. © 2007 The American Physical Society.
Más información
| Título según WOS: | Exact probability distribution for the Bernoulli-Malthus-Verhulst model driven by a multiplicative colored noise |
| Título según SCOPUS: | Exact probability distribution for the Bernoulli-Malthus-Verhulst model driven by a multiplicative colored noise |
| Título de la Revista: | PHYSICAL REVIEW E |
| Volumen: | 75 |
| Número: | 5 |
| Editorial: | AMER PHYSICAL SOC |
| Fecha de publicación: | 2007 |
| Idioma: | English |
| URL: | http://link.aps.org/doi/10.1103/PhysRevE.75.050103 |
| DOI: |
10.1103/PhysRevE.75.050103 |
| Notas: | ISI, SCOPUS |