Isospectral flows preserving some centrosymmetric structures

Gladwell, GML; Rojo, O

Abstract

Let G be a simple undirected graph (no loops, no multiple edges) on n vertices. Let S n be the set of real symmetric matrices of order n. A matrix A = (a i, j) ∈ S n is said to be a matrix on G if a i, j = 0 whenever i ≠ j and the vertices i, j of G are not joined by an edge of G. We recall that if F is a skew-symmetric operator on S n, then the solution A(t) offenced((frac(d A, d t) = [A, F (A)]; A (0) = A 0 ∈ S n))maintains the spectrum of A 0. The matrix A ∈ S n is said to be centrosymmetric if JAJ = A, where J is the matrix with ones on the secondary diagonal and zeros elsewhere. Centrosymmetric matrices are symmetric about the secondary diagonal. Centrosymmetric matrices appear in fields such as finite element analysis. We construct an isospectral flow on a graph G, with the property that if A 0 is centrosymmetric, so is A(t), and discuss the limit of A(t) as t → ∞. © 2006 Elsevier Inc. All rights reserved.

Más información

Título según WOS: Isospectral flows preserving some centrosymmetric structures
Título según SCOPUS: Isospectral flows preserving some centrosymmetric structures
Título de la Revista: LINEAR ALGEBRA AND ITS APPLICATIONS
Volumen: 422
Número: 02-mar
Editorial: Elsevier Science Inc.
Fecha de publicación: 2007
Página de inicio: 839
Página final: 853
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0024379506005532
DOI:

10.1016/j.laa.2006.12.010

Notas: ISI, SCOPUS