On multiplicative perturbation of integral resolvent families

Lizama C.; Poblete V.

Abstract

In this paper we study multiplicative perturbations for the generator of a strongly continuous integral resolvent family of bounded linear operators defined on a Banach space X. Assuming that a (t) is a creep function which satisfies a (0+) > 0, we prove that if (A, a) generates an integral resolvent, then (A (I + B), a) also generates an integral resolvent for all B ∈ B (X, Z), where Z belongs to a class of admissible Banach spaces. In special instances of a (t) the space Z is proved to be characterized by an extended class of Favard spaces. © 2006 Elsevier Inc. All rights reserved.

Más información

Título según WOS: On multiplicative perturbation of integral resolvent families
Título según SCOPUS: On multiplicative perturbation of integral resolvent families
Título de la Revista: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
Volumen: 327
Número: 2
Editorial: ACADEMIC PRESS INC ELSEVIER SCIENCE
Fecha de publicación: 2007
Página de inicio: 1335
Página final: 1359
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0022247X06004562
DOI:

10.1016/j.jmaa.2006.04.087

Notas: ISI, SCOPUS