On multiplicative perturbation of integral resolvent families
Abstract
In this paper we study multiplicative perturbations for the generator of a strongly continuous integral resolvent family of bounded linear operators defined on a Banach space X. Assuming that a (t) is a creep function which satisfies a (0+) > 0, we prove that if (A, a) generates an integral resolvent, then (A (I + B), a) also generates an integral resolvent for all B ∈ B (X, Z), where Z belongs to a class of admissible Banach spaces. In special instances of a (t) the space Z is proved to be characterized by an extended class of Favard spaces. © 2006 Elsevier Inc. All rights reserved.
Más información
Título según WOS: | On multiplicative perturbation of integral resolvent families |
Título según SCOPUS: | On multiplicative perturbation of integral resolvent families |
Título de la Revista: | JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS |
Volumen: | 327 |
Número: | 2 |
Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
Fecha de publicación: | 2007 |
Página de inicio: | 1335 |
Página final: | 1359 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0022247X06004562 |
DOI: |
10.1016/j.jmaa.2006.04.087 |
Notas: | ISI, SCOPUS |