A family of evolution equations with nonlinear diffusion, Verhulst growth, and global regulation: Exact time-dependent solutions
Abstract
A family of evolution equations describing a power-law nonlinear diffusion process coupled with a local Verhulst-like growth dynamics, and incorporating a global regulation mechanism, is considered. These equations admit an interpretation in terms of population dynamics, and are related to the so-called conserved Fisher equation. Exact time-dependent solutions exhibiting a maximum nonextensive q-entropy shape are obtained. © 2006 Elsevier B.V. All rights reserved.
Más información
Título según WOS: | A family of evolution equations with nonlinear diffusion, Verhulst growth, and global regulation: Exact time-dependent solutions |
Título según SCOPUS: | A family of evolution equations with nonlinear diffusion, Verhulst growth, and global regulation: Exact time-dependent solutions |
Título de la Revista: | PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS |
Volumen: | 375 |
Número: | 2 |
Editorial: | ELSEVIER SCIENCE BV |
Fecha de publicación: | 2007 |
Página de inicio: | 457 |
Página final: | 466 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0378437106010569 |
DOI: |
10.1016/j.physa.2006.10.010 |
Notas: | ISI, SCOPUS |