A family of evolution equations with nonlinear diffusion, Verhulst growth, and global regulation: Exact time-dependent solutions

Troncoso P.; Fierro O.; Curilef, S; Plastino, AR

Abstract

A family of evolution equations describing a power-law nonlinear diffusion process coupled with a local Verhulst-like growth dynamics, and incorporating a global regulation mechanism, is considered. These equations admit an interpretation in terms of population dynamics, and are related to the so-called conserved Fisher equation. Exact time-dependent solutions exhibiting a maximum nonextensive q-entropy shape are obtained. © 2006 Elsevier B.V. All rights reserved.

Más información

Título según WOS: A family of evolution equations with nonlinear diffusion, Verhulst growth, and global regulation: Exact time-dependent solutions
Título según SCOPUS: A family of evolution equations with nonlinear diffusion, Verhulst growth, and global regulation: Exact time-dependent solutions
Título de la Revista: PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS
Volumen: 375
Número: 2
Editorial: ELSEVIER SCIENCE BV
Fecha de publicación: 2007
Página de inicio: 457
Página final: 466
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0378437106010569
DOI:

10.1016/j.physa.2006.10.010

Notas: ISI, SCOPUS