One-dimensional backward stochastic differential equations whose coefficient is monotonic in y and non-Lipschitz in z

Briand, P; Lepeltier, JP; San Martin, J

Abstract

In this paper we study one-dimensional BSDE's whose coefficient f is monotonic in y and non-Lipschitz in z. We obtain a general existence result when f has at most quadratic growth in z and ξ is bounded. We study the special case f(t, y, z) = z p where p ∈ (1, 2]. Finally, we study the case f has a linear growth in z, general growth in y and ξ is not necessarily bounded. © 2007 ISI/BS.

Más información

Título según WOS: One-dimensional backward stochastic differential equations whose coefficient is monotonic in y and non-Lipschitz in z
Título según SCOPUS: One-dimensional backward stochastic differential equations whose coefficient is monotonic in y and non-Lipschitz in z
Título de la Revista: BERNOULLI
Volumen: 13
Número: 1
Editorial: INT STATISTICAL INST
Fecha de publicación: 2007
Página de inicio: 80
Página final: 91
Idioma: English
URL: http://projecteuclid.org/euclid.bj/1175287721
DOI:

10.3150/07-BEJ5004

Notas: ISI, SCOPUS