A global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem
Abstract
We consider a transmission wave equation in two embedded domains in , where the speed is a1 > 0 in the inner domain and a2 > 0 in the outer domain. We prove a global Carleman inequality for this problem under the hypothesis that the inner domain is strongly convex and a1 > a2. As a consequence of this inequality, uniqueness and Lipschitz stability are obtained for the inverse problem of retrieving a stationary potential for the wave equation with Dirichlet data and discontinuous principal coefficient from a single time-dependent Neumann boundary measurement. © 2007 IOP Publishing Ltd.
Más información
Título según WOS: | A global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem |
Título según SCOPUS: | A global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem |
Título de la Revista: | INVERSE PROBLEMS |
Volumen: | 23 |
Número: | 1 |
Editorial: | IOP PUBLISHING LTD |
Fecha de publicación: | 2007 |
Página de inicio: | 257 |
Página final: | 278 |
Idioma: | English |
URL: | http://stacks.iop.org/0266-5611/23/i=1/a=014?key=crossref.5c2def4046e60f25da8642f3ee3ff4be |
DOI: |
10.1088/0266-5611/23/1/014 |
Notas: | ISI, SCOPUS |