A global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem

Baudouin, L; Mercado, A.; Osses A.

Abstract

We consider a transmission wave equation in two embedded domains in , where the speed is a1 > 0 in the inner domain and a2 > 0 in the outer domain. We prove a global Carleman inequality for this problem under the hypothesis that the inner domain is strongly convex and a1 > a2. As a consequence of this inequality, uniqueness and Lipschitz stability are obtained for the inverse problem of retrieving a stationary potential for the wave equation with Dirichlet data and discontinuous principal coefficient from a single time-dependent Neumann boundary measurement. © 2007 IOP Publishing Ltd.

Más información

Título según WOS: A global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem
Título según SCOPUS: A global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem
Título de la Revista: INVERSE PROBLEMS
Volumen: 23
Número: 1
Editorial: IOP PUBLISHING LTD
Fecha de publicación: 2007
Página de inicio: 257
Página final: 278
Idioma: English
URL: http://stacks.iop.org/0266-5611/23/i=1/a=014?key=crossref.5c2def4046e60f25da8642f3ee3ff4be
DOI:

10.1088/0266-5611/23/1/014

Notas: ISI, SCOPUS