An optimal alternative theorem and applications to mathematical programming

Flores, Bazan, F.; Hadjisavvas, N; Vera C.

Abstract

Given a closed convex cone P with nonempty interior in a locally convex vector space, and a set ⊂ Y , we provide various equivalences to the implication A ∩ (-int P) = ∅ ⇒ co(A)∩ (-int P) = ∅, among them, to the pointedness of cone(A + int P). This allows us to establish an optimal alternative theorem, suitable for vector optimization problems. In addition, we present an optimal alternative theorem which characterizes two-dimensional spaces in the sense that it is valid if, and only if, the space is at most two-dimensional. Applications to characterizing weakly efficient solutions through scalarization; the zero (Lagrangian) duality gap; the Fritz-John optimality conditions for a class of nonconvex nonsmooth minimization problems, are also presented. © Springer Science+Business Media B.V. 2007.

Más información

Título según WOS: An optimal alternative theorem and applications to mathematical programming
Título según SCOPUS: An optimal alternative theorem and applications to mathematical programming
Título de la Revista: JOURNAL OF GLOBAL OPTIMIZATION
Volumen: 37
Número: 2
Editorial: Springer
Fecha de publicación: 2007
Página de inicio: 229
Página final: 243
Idioma: English
URL: http://link.springer.com/10.1007/s10898-006-9046-8
DOI:

10.1007/s10898-006-9046-8

Notas: ISI, SCOPUS