Isospectral flows that preserve matrix structure

Gladwell, GML; Rojo, O

Abstract

The matrix A = (a ij) ∈ S n is said to lie on a strict undirected graph G if a ij = 0 (i ≠ j) whenever (i, j) is not in E (G). If S is skew-symmetric, the isospectral flow over(A, ̇) (t) = [A, S] maintains the spectrum of A. We consider isospectral flows that maintain a matrix A(t) on a given graph G. We review known results for a graph G that is a (generalised) path, and construct isospectral flows for a (generalised) ring, and a star, and show how a flow may be constructed for a general graph. The analysis may be applied to the isospectral problem for a lumped-mass finite element model of an undamped vibrating system. In that context, it is important that the flow maintain other properties such as irreducibility or positivity, and we discuss whether they are maintained. © 2006 Elsevier Inc. All rights reserved.

Más información

Título según WOS: Isospectral flows that preserve matrix structure
Título según SCOPUS: Isospectral flows that preserve matrix structure
Título de la Revista: LINEAR ALGEBRA AND ITS APPLICATIONS
Volumen: 421
Número: 1
Editorial: Elsevier Science Inc.
Fecha de publicación: 2007
Página de inicio: 85
Página final: 96
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0024379506001972
DOI:

10.1016/j.laa.2006.03.042

Notas: ISI, SCOPUS