Characterization of Gaussian self-similar stochastic processes using wavelet-based informational tools

Zunino, L; Perez, DG; Martin, MT; Plastino, A; Garavaglia M.; Rosso, OA

Abstract

Efficient tools to characterize stochastic processes are discussed. Quantifiers originally proposed within the framework of information theory, like entropy and statistical complexity, are translated into wavelet language, which renders the above quantifiers into tools that exhibit the important "localization" advantages provided by wavelet theory. Two important and popular stochastic processes, fractional Brownian motion and fractional Gaussian noise, are studied using these wavelet-based informational tools. Exact analytical expressions are obtained for the wavelet probability distribution. Finally, numerical simulations are used to validate our analytical results. © 2007 The American Physical Society.

Más información

Título según WOS: Characterization of Gaussian self-similar stochastic processes using wavelet-based informational tools
Título según SCOPUS: Characterization of Gaussian self-similar stochastic processes using wavelet-based informational tools
Título de la Revista: PHYSICAL REVIEW E
Volumen: 75
Número: 2
Editorial: AMER PHYSICAL SOC
Fecha de publicación: 2007
Idioma: English
URL: http://link.aps.org/doi/10.1103/PhysRevE.75.021115
DOI:

10.1103/PhysRevE.75.021115

Notas: ISI, SCOPUS