On the spectra of some weighted rooted trees and applications
Abstract
Let T be a weighted rooted tree of k levels such that(1)the vertices in level j have a degree equal to dk-j+1 for j = 1, 2, ..., k, and(2)the edges joining the vertices in level j with the vertices in level (j + 1) have a weight equal to wk-j for j = 1, 2, ..., k-1. We give a complete characterization of the eigenvalues of the Laplacian matrix and adjacency matrix of T. They are the eigenvalues of leading principal submatrices of two nonnegative symmetric tridiagonal matrices of order k × k. Moreover, we give some results concerning their multiplicities. By application of the above mentioned results, we derive upper bounds on the largest eigenvalue of any weighted tree and the spectra of some weighted Bethe trees. © 2006 Elsevier Inc. All rights reserved.
Más información
Título según WOS: | On the spectra of some weighted rooted trees and applications |
Título según SCOPUS: | On the spectra of some weighted rooted trees and applications |
Título de la Revista: | LINEAR ALGEBRA AND ITS APPLICATIONS |
Volumen: | 420 |
Número: | 02-mar |
Editorial: | Elsevier Science Inc. |
Fecha de publicación: | 2007 |
Página de inicio: | 310 |
Página final: | 328 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0024379506003399 |
DOI: |
10.1016/j.laa.2006.07.011 |
Notas: | ISI, SCOPUS |