A nontrivial upper bound on the largest Laplacian eigenvalue of weighted graphs
Abstract
Let G be a simple connected weighted graph on n vertices in which the edge weights are positive numbers. Denote by i ∼ j if the vertices i and j are adjacent and by wi,j the weight of the edge ij. Let wi = ∑j = 1 n wi, j. Let λ1 be the largest Laplacian eigenvalue of G. We first derive the upper boundλ1 ≤ underover(∑, j = 1, n) under(max, k ∼ j) wk, j .We call this bound the trivial upper bound for λ1. Our main result is{Mathematical expression}For any G, this new bound does not exceed the trivial upper bound for λ1. © 2006 Elsevier Inc. All rights reserved.
Más información
Título según WOS: | A nontrivial upper bound on the largest Laplacian eigenvalue of weighted graphs |
Título según SCOPUS: | A nontrivial upper bound on the largest Laplacian eigenvalue of weighted graphs |
Título de la Revista: | LINEAR ALGEBRA AND ITS APPLICATIONS |
Volumen: | 420 |
Número: | 02-mar |
Editorial: | Elsevier Science Inc. |
Fecha de publicación: | 2007 |
Página de inicio: | 625 |
Página final: | 633 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0024379506003946 |
DOI: |
10.1016/j.laa.2006.08.022 |
Notas: | ISI, SCOPUS |