A nontrivial upper bound on the largest Laplacian eigenvalue of weighted graphs

Rojo, O

Abstract

Let G be a simple connected weighted graph on n vertices in which the edge weights are positive numbers. Denote by i ∼ j if the vertices i and j are adjacent and by wi,j the weight of the edge ij. Let wi = ∑j = 1 n wi, j. Let λ1 be the largest Laplacian eigenvalue of G. We first derive the upper boundλ1 ≤ underover(∑, j = 1, n) under(max, k ∼ j) wk, j .We call this bound the trivial upper bound for λ1. Our main result is{Mathematical expression}For any G, this new bound does not exceed the trivial upper bound for λ1. © 2006 Elsevier Inc. All rights reserved.

Más información

Título según WOS: A nontrivial upper bound on the largest Laplacian eigenvalue of weighted graphs
Título según SCOPUS: A nontrivial upper bound on the largest Laplacian eigenvalue of weighted graphs
Título de la Revista: LINEAR ALGEBRA AND ITS APPLICATIONS
Volumen: 420
Número: 02-mar
Editorial: Elsevier Science Inc.
Fecha de publicación: 2007
Página de inicio: 625
Página final: 633
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0024379506003946
DOI:

10.1016/j.laa.2006.08.022

Notas: ISI, SCOPUS