The spectra of a graph obtained from copies of a generalized Bethe tree
Abstract
We generalize the concept of a Bethe tree as follows: we say that an unweighted rooted tree is a generalized Bethe tree if in each level the vertices have equal degree. If Bk is a generalized Bethe tree of k levels then we characterize completely the eigenvalues of the adjacency matrix and Laplacian matrix of a graph Bk (r) obtained from the union of r copies of Bk and the cycle Cr connecting the r vertex roots. Moreover, we give results on the multiplicity of the eigenvalues, on the spectral radii and on the algebraic conectivity. © 2006 Elsevier Inc. All rights reserved.
Más información
Título según WOS: | The spectra of a graph obtained from copies of a generalized Bethe tree |
Título según SCOPUS: | The spectra of a graph obtained from copies of a generalized Bethe tree |
Título de la Revista: | LINEAR ALGEBRA AND ITS APPLICATIONS |
Volumen: | 420 |
Número: | 02-mar |
Editorial: | Elsevier Science Inc. |
Fecha de publicación: | 2007 |
Página de inicio: | 490 |
Página final: | 507 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0024379506003697 |
DOI: |
10.1016/j.laa.2006.08.006 |
Notas: | ISI, SCOPUS |