Nonexistence of Bonatti-Langevin examples of Anosov flows on closed four manifolds

Carballo, CM; Morales, CA; San Martin B.

Abstract

Bonatti and Langevin constructed an Anosov flow on a closed 3-manifold with a transverse torus intersecting all orbits except one [C. Bonatti, R. Langevin, Un exemple de flot d'Anosov transitif transverse à un tore et non conjugué à une suspension, Ergodic Theory Dynam. Systems 14 (4) (1994), 633-643]. We shall prove that these flows cannot be constructed on closed 4-manifolds. More precisely, there are no Anosov flows on closed 4-manifolds with a closed, incompressible, transverse submanifold intersecting all orbits except finitely many closed ones. The proof relies on the analysis of the trace of the weak invariant foliations of the flow on the transverse submanifold. © 2006 Elsevier B.V. All rights reserved.

Más información

Título según WOS: Nonexistence of Bonatti-Langevin examples of Anosov flows on closed four manifolds
Título según SCOPUS: Nonexistence of Bonatti-Langevin examples of Anosov flows on closed four manifolds
Título de la Revista: TOPOLOGY AND ITS APPLICATIONS
Volumen: 154
Número: 2
Editorial: ELSEVIER SCIENCE BV
Fecha de publicación: 2007
Página de inicio: 326
Página final: 332
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0166864106001398
DOI:

10.1016/j.topol.2006.04.015

Notas: ISI, SCOPUS