On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid
Abstract
We consider the motion of a rigid body immersed in a bidimensional incompressible perfect fluid. The motion of the fluid is governed by the Euler equations and the conservation laws of linear and angular momentum rule the dynamics of the rigid body. We prove the existence and uniqueness of a global classical solution for this fluid-structure interaction problem. The proof relies mainly on weighted estimates for the vorticity associated with the strong solution of a fluid-structure interaction problem obtained by incorporating some viscosity. © 2006 Elsevier SAS. All rights reserved.
Más información
Título según WOS: | On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid |
Título según SCOPUS: | On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid |
Título de la Revista: | ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE |
Volumen: | 24 |
Número: | 1 |
Editorial: | EUROPEAN MATHEMATICAL SOC-EMS |
Fecha de publicación: | 2007 |
Página de inicio: | 139 |
Página final: | 165 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0294144906000370 |
DOI: |
10.1016/j.anihpc.2005.12.004 |
Notas: | ISI, SCOPUS |