Concentration on curves for nonlinear Schrodinger equations
Abstract
We consider the problem ε 2Δu - V (x)u + u p = o. u> 0, u ∈ H 1 (℠2, where p > 1, ε > 0 is a small parameter, and V is a uniformly positive, smooth potential. Let F be a closed curve, nondegenerate geodesic relative to the weighted arc length γ V ω where ω = (p + 1)/(p - 1) - 1/2. We prove the existence of a solution u ∈ concentrating along the whole of γ, exponentially small in e at any positive distance from it, provided that ε is small and away from certain critical numbers. In particular, this establishes the validity of a conjecture raised in [3] in the two-dimensional case. © 2006 Wiley Periodicals, Inc.
Más información
| Título según WOS: | Concentration on curves for nonlinear Schrodinger equations |
| Título según SCOPUS: | Concentration on curves for nonlinear schrödinger equations |
| Título de la Revista: | COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS |
| Volumen: | 60 |
| Número: | 1 |
| Editorial: | Wiley |
| Fecha de publicación: | 2007 |
| Página de inicio: | 113 |
| Página final: | 146 |
| Idioma: | English |
| URL: | http://doi.wiley.com/10.1002/cpa.20135 |
| DOI: |
10.1002/cpa.20135 |
| Notas: | ISI, SCOPUS |