An augmented discontinuous Galerkin method for elliptic problems
Abstract
In this Note we propose an augmented discontinuous Galerkin method for elliptic linear problems in the plane with mixed boundary conditions. Our approach introduces Galerkin least-squares terms, arising from constitutive and equilibrium equations, which allow us to look for the flux unknown in the local Raviart-Thomas space. The unique solvability is established avoiding the introduction of lifting operators and a Céa estimate is derived, which yields the rate of convergence of error, measured in an appropriate norm, being optimal respect to the h-version. We emphasize that for practical computations, this method reduces the degrees of freedom, with respect to the classical discontinuous Galerkin method. To cite this article: T.P. Barrios, R. Bustinza, C. R. Acad. Sci. Paris, Ser. I 344 (2007). © 2006 Académie des sciences.
Más información
Título según WOS: | An augmented discontinuous Galerkin method for elliptic problems |
Título según SCOPUS: | An augmented discontinuous Galerkin method for elliptic problems |
Título de la Revista: | COMPTES RENDUS MATHEMATIQUE |
Volumen: | 344 |
Número: | 1 |
Editorial: | ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER |
Fecha de publicación: | 2007 |
Página de inicio: | 53 |
Página final: | 58 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S1631073X06004560 |
DOI: |
10.1016/j.crma.2006.11.003 |
Notas: | ISI, SCOPUS |