An augmented discontinuous Galerkin method for elliptic problems

Barrios, TP; Bustinza, R

Abstract

In this Note we propose an augmented discontinuous Galerkin method for elliptic linear problems in the plane with mixed boundary conditions. Our approach introduces Galerkin least-squares terms, arising from constitutive and equilibrium equations, which allow us to look for the flux unknown in the local Raviart-Thomas space. The unique solvability is established avoiding the introduction of lifting operators and a Céa estimate is derived, which yields the rate of convergence of error, measured in an appropriate norm, being optimal respect to the h-version. We emphasize that for practical computations, this method reduces the degrees of freedom, with respect to the classical discontinuous Galerkin method. To cite this article: T.P. Barrios, R. Bustinza, C. R. Acad. Sci. Paris, Ser. I 344 (2007). © 2006 Académie des sciences.

Más información

Título según WOS: An augmented discontinuous Galerkin method for elliptic problems
Título según SCOPUS: An augmented discontinuous Galerkin method for elliptic problems
Título de la Revista: COMPTES RENDUS MATHEMATIQUE
Volumen: 344
Número: 1
Editorial: ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
Fecha de publicación: 2007
Página de inicio: 53
Página final: 58
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S1631073X06004560
DOI:

10.1016/j.crma.2006.11.003

Notas: ISI, SCOPUS