A dynamical characterization for monogenity at every level of some infinite 2-towers
Abstract
We consider a concrete family of 2-towers (Q(x(n)))(n) of totally real algebraic numbers for whichwe prove that, for each n, Z[x(n)] is the ringof integers ofQ(x(n)) if and only if the constant term of theminimal polynomial of x(n) is square-free. We apply our characterization to produce new examples of monogenic number fields, which can be of arbitrary large degree under the ABC-Conjecture.
Más información
| Título según WOS: | A dynamical characterization for monogenity at every level of some infinite 2-towers |
| Título de la Revista: | CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES |
| Volumen: | 65 |
| Número: | 3 |
| Editorial: | CAMBRIDGE UNIV PRESS |
| Fecha de publicación: | 2022 |
| Página de inicio: | 806 |
| Página final: | 814 |
| DOI: |
10.4153/S0008439521000874 |
| Notas: | ISI |