Symmetric nonnegative realization of spectra

Soto, RL; Rojo, O; Moro, J; Borobia, A

Abstract

A perturbation result, due to R. Rado and presented by H. Perfect in 1955, shows how to modify r eigenvalues of a matrix of order n, r ≤ n, via a perturbation of rank r, without changing any of the n - r remaining eigenvalues. This result extended a previous one, due to Brauer, on perturbations of rank r = 1. Both results have been exploited in connection with the nonnegative inverse eigenvalue problem. In this paper a symmetric version of Rado's extension is given, which allows us to obtain a new, more general, sufficient condition for the existence of symmetric nonnegative matrices with prescribed spectrum. Symmetric nonnegative inverse eigenvalue problem.

Más información

Título según WOS: Symmetric nonnegative realization of spectra
Título según SCOPUS: Symmetric nonnegative realization of spectra
Título de la Revista: ELECTRONIC JOURNAL OF LINEAR ALGEBRA
Volumen: 16
Editorial: ILAS
Fecha de publicación: 2007
Página de inicio: 1
Página final: 18
Idioma: English
Notas: ISI, SCOPUS