Symmetric nonnegative realization of spectra
Abstract
A perturbation result, due to R. Rado and presented by H. Perfect in 1955, shows how to modify r eigenvalues of a matrix of order n, r ≤ n, via a perturbation of rank r, without changing any of the n - r remaining eigenvalues. This result extended a previous one, due to Brauer, on perturbations of rank r = 1. Both results have been exploited in connection with the nonnegative inverse eigenvalue problem. In this paper a symmetric version of Rado's extension is given, which allows us to obtain a new, more general, sufficient condition for the existence of symmetric nonnegative matrices with prescribed spectrum. Symmetric nonnegative inverse eigenvalue problem.
Más información
Título según WOS: | Symmetric nonnegative realization of spectra |
Título según SCOPUS: | Symmetric nonnegative realization of spectra |
Título de la Revista: | ELECTRONIC JOURNAL OF LINEAR ALGEBRA |
Volumen: | 16 |
Editorial: | ILAS |
Fecha de publicación: | 2007 |
Página de inicio: | 1 |
Página final: | 18 |
Idioma: | English |
Notas: | ISI, SCOPUS |