Lenstra's constant and extreme forms in number fields

Coulangeon, R; Icaza, MI

Abstract

In this paper we compute γκ,2 for K = ℚ(ρ), where ρ is the real root of the polynomial x3 - x2 + 1 = 0. We refine some techniques introduced in [Baeza et al. 01] to construct all possible sets of minimal vectors for perfect forms. These refinements include a relation between minimal vectors and the Lenstra constant. This construction gives rise to results that can be applied in several other cases. © A K Peters, Ltd.

Más información

Título según WOS: Lenstra's constant and extreme forms in number fields
Título según SCOPUS: Lenstra's constant and extreme forms in number fields
Título de la Revista: EXPERIMENTAL MATHEMATICS
Volumen: 16
Número: 4
Editorial: TAYLOR & FRANCIS INC
Fecha de publicación: 2007
Página de inicio: 455
Página final: 462
Idioma: English
URL: http://www.tandfonline.com/doi/abs/10.1080/10586458.2007.10129014
DOI:

10.1080/10586458.2007.10129014

Notas: ISI, SCOPUS