Lenstra's constant and extreme forms in number fields
Abstract
In this paper we compute γκ,2 for K = ℚ(Ï), where Ï is the real root of the polynomial x3 - x2 + 1 = 0. We refine some techniques introduced in [Baeza et al. 01] to construct all possible sets of minimal vectors for perfect forms. These refinements include a relation between minimal vectors and the Lenstra constant. This construction gives rise to results that can be applied in several other cases. © A K Peters, Ltd.
Más información
| Título según WOS: | Lenstra's constant and extreme forms in number fields |
| Título según SCOPUS: | Lenstra's constant and extreme forms in number fields |
| Título de la Revista: | EXPERIMENTAL MATHEMATICS |
| Volumen: | 16 |
| Número: | 4 |
| Editorial: | TAYLOR & FRANCIS INC |
| Fecha de publicación: | 2007 |
| Página de inicio: | 455 |
| Página final: | 462 |
| Idioma: | English |
| URL: | http://www.tandfonline.com/doi/abs/10.1080/10586458.2007.10129014 |
| DOI: |
10.1080/10586458.2007.10129014 |
| Notas: | ISI, SCOPUS |