On Brannan's coefficient conjecture and applications

Ruscheweyh, S; Salinas, L.

Abstract

Brannan's conjecture says that for 0 < α, β ≤ 1, | x| = 1, and n ∈ ℕ one has |A2n-1(α, β, x)| ≤ |A 2n-1(α, β, 1)1, where (1+xz)α/(1-z) β = ∑n=0 ∞ An(α, β, x)zn. We prove this for the case α = β, and also prove a differentiated version of the Brannan conjecture. This has applications to estimates for Gegenbauer polynomials and also to coefficient estimates for univalent functions in the unit disk that are 'starlike with respect to a boundary point'. The latter application has previously been conjectured by H. Silverman and E. Silvia. The proofs make use of various properties of the Gauss hypergeometric function. © 2007 Glasgow Mathematical Journal Trust.

Más información

Título según WOS: On Brannan's coefficient conjecture and applications
Título según SCOPUS: On Brannan's coefficient conjecture and applications
Título de la Revista: GLASGOW MATHEMATICAL JOURNAL
Volumen: 49
Número: 1
Editorial: CAMBRIDGE UNIV PRESS
Fecha de publicación: 2007
Página de inicio: 45
Página final: 52
Idioma: English
URL: http://www.journals.cambridge.org/abstract_S0017089507003400
DOI:

10.1017/S0017089507003400

Notas: ISI, SCOPUS