On Brannan's coefficient conjecture and applications
Abstract
Brannan's conjecture says that for 0 < α, β ≤ 1, | x| = 1, and n ∈ ℕ one has |A2n-1(α, β, x)| ≤ |A 2n-1(α, β, 1)1, where (1+xz)α/(1-z) β = ∑n=0 ∞ An(α, β, x)zn. We prove this for the case α = β, and also prove a differentiated version of the Brannan conjecture. This has applications to estimates for Gegenbauer polynomials and also to coefficient estimates for univalent functions in the unit disk that are 'starlike with respect to a boundary point'. The latter application has previously been conjectured by H. Silverman and E. Silvia. The proofs make use of various properties of the Gauss hypergeometric function. © 2007 Glasgow Mathematical Journal Trust.
Más información
Título según WOS: | On Brannan's coefficient conjecture and applications |
Título según SCOPUS: | On Brannan's coefficient conjecture and applications |
Título de la Revista: | GLASGOW MATHEMATICAL JOURNAL |
Volumen: | 49 |
Número: | 1 |
Editorial: | CAMBRIDGE UNIV PRESS |
Fecha de publicación: | 2007 |
Página de inicio: | 45 |
Página final: | 52 |
Idioma: | English |
URL: | http://www.journals.cambridge.org/abstract_S0017089507003400 |
DOI: |
10.1017/S0017089507003400 |
Notas: | ISI, SCOPUS |