Blends based on amino acid functionalized poly (ethylene-alt-maleic anhydride) polyelectrolytes and PEO for nanofiber elaboration: Biocompatible and angiogenic polyelectrolytes

Leal, Matias; Leiva, Angel; Villalobos, Valeria; Palma, Veronica; Carrillo, Daniela; Edwards, Natalie; Maine, Arianne; Cauich-Rodriguez, Juan, V; Tamayo, Laura; Neira-Carrillo, Andronico; Urzua, Marcela

Abstract

A wide variety of polymers have been electrospun to obtain nanofibers. However, obtaining nanofibers from polyelectrolytes is less frequent due to the charges of these polymers, which hinder the electrospinning process. Poly (ethylene-alt-maleic anhydride) (PEMA) was modified with a series of amino acids (Aa). The functionalization of PEMA with Aa (PEMA-Aa) was demonstrated by FT-IR, H-1 NMR, and C-13 NMR. Blends of PEMA-Aa and poly (ethylene oxide), PEO, with different ratios were prepared. Nanofibers were obtained by electrospinning using blends of 10-20% w/v of PEMA-Aa and 10% w/v of PEO. The conductivity of blends decreased, and the surface tension increased as the quantity of PEO in the blends was increased. TGA showed intermediate thermal properties compared with the blend components. Nanofibers were obtained for all PEMA-Aa/PEO blends, with diameters between 170 and 350 nm. Continuous fibers without morphological defects were obtained at concentrations of 20% w/v and 10% w/v of PEMA-Aa and PEO. Wharton's Jelly Mesenchymal Stem Cells viability, chicken embryo chorioallantoic membrane (CAM) assay and embryo viability measurements were realized for PEMA-Aa. Cytotoxicity test showed both composition and concentration-dependent behavior for PEMA-Aa, with higher WJ-MSC viability at 0.1 mg/mL at 24 h. CAM assay showed the formation of a high number of blood vessels and chicken embryo viability was close to 100% in the presence of polyelectrolytes. This, study demonstrates that electrospun nanofibers obtained from PEMA-Aa/PEO modified polyelectrolyte blends can be considered as a promising material for biomedical applications.

Más información

Título según WOS: Blends based on amino acid functionalized poly (ethylene-alt-maleic anhydride) polyelectrolytes and PEO for nanofiber elaboration: Biocompatible and angiogenic polyelectrolytes
Título de la Revista: EUROPEAN POLYMER JOURNAL
Volumen: 173
Editorial: PERGAMON-ELSEVIER SCIENCE LTD
Fecha de publicación: 2022
DOI:

10.1016/j.eurpolymj.2022.111269

Notas: ISI