Central periodic points of linear systems
Abstract
In this paper, we introduce the concept of central periodic points of a linear system as points which lies on orbits starting and ending at the central subgroup of the system. We show that this set is bounded if and only if the central subgroup is compact. Moreover, if the system admits a control set containing the identity element of G then, the set of central periodic points, coincides with its interior. (C) 2020 Elsevier Inc. All rights reserved.
Más información
Título según WOS: | Central periodic points of linear systems |
Título de la Revista: | JOURNAL OF DIFFERENTIAL EQUATIONS |
Volumen: | 272 |
Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
Fecha de publicación: | 2021 |
Página de inicio: | 310 |
Página final: | 329 |
DOI: |
10.1016/j.jde.2020.10.001 |
Notas: | ISI |