Central periodic points of linear systems

Ayala, Victor; Da Silva, Adriano

Abstract

In this paper, we introduce the concept of central periodic points of a linear system as points which lies on orbits starting and ending at the central subgroup of the system. We show that this set is bounded if and only if the central subgroup is compact. Moreover, if the system admits a control set containing the identity element of G then, the set of central periodic points, coincides with its interior. (C) 2020 Elsevier Inc. All rights reserved.

Más información

Título según WOS: Central periodic points of linear systems
Título de la Revista: JOURNAL OF DIFFERENTIAL EQUATIONS
Volumen: 272
Editorial: ACADEMIC PRESS INC ELSEVIER SCIENCE
Fecha de publicación: 2021
Página de inicio: 310
Página final: 329
DOI:

10.1016/j.jde.2020.10.001

Notas: ISI