A priori and a posteriori error analysis of a wavelet based stabilization for the mixed finite element method

Barrios, TP; Gatica, GN; Paiva F.

Abstract

We use Galerkin least-squares terms and biorthogonal wavelet bases to develop a new stabilized dual-mixed finite element method for second-order elliptic equations in divergence form with Neumann boundary conditions. The approach introduces the trace of the solution on the boundary as a new unknown that acts also as a Lagrange multiplier. We show that the resulting stabilized dual-mixed variational formulation and the associated discrete scheme defined with Raviart-Thomas spaces are well-posed and derive the usual a priori error estimates and the corresponding rate of convergence. Furthermore, a reliable and efficient residual-based a posteriori error estimator and a reliable and quasi-efficient one are provided.

Más información

Título según WOS: A priori and a posteriori error analysis of a wavelet based stabilization for the mixed finite element method
Título según SCOPUS: A priori and a posteriori error analysis of a wavelet-based stabilization for the mixed finite element method
Título de la Revista: NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION
Volumen: 28
Número: 03-abr
Editorial: TAYLOR & FRANCIS INC
Fecha de publicación: 2007
Página de inicio: 265
Página final: 286
Idioma: English
URL: http://www.tandfonline.com/doi/abs/10.1080/01630560701249947
DOI:

10.1080/01630560701249947

Notas: ISI, SCOPUS