A priori and a posteriori error analysis of a wavelet based stabilization for the mixed finite element method
Abstract
We use Galerkin least-squares terms and biorthogonal wavelet bases to develop a new stabilized dual-mixed finite element method for second-order elliptic equations in divergence form with Neumann boundary conditions. The approach introduces the trace of the solution on the boundary as a new unknown that acts also as a Lagrange multiplier. We show that the resulting stabilized dual-mixed variational formulation and the associated discrete scheme defined with Raviart-Thomas spaces are well-posed and derive the usual a priori error estimates and the corresponding rate of convergence. Furthermore, a reliable and efficient residual-based a posteriori error estimator and a reliable and quasi-efficient one are provided.
Más información
Título según WOS: | A priori and a posteriori error analysis of a wavelet based stabilization for the mixed finite element method |
Título según SCOPUS: | A priori and a posteriori error analysis of a wavelet-based stabilization for the mixed finite element method |
Título de la Revista: | NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION |
Volumen: | 28 |
Número: | 03-abr |
Editorial: | TAYLOR & FRANCIS INC |
Fecha de publicación: | 2007 |
Página de inicio: | 265 |
Página final: | 286 |
Idioma: | English |
URL: | http://www.tandfonline.com/doi/abs/10.1080/01630560701249947 |
DOI: |
10.1080/01630560701249947 |
Notas: | ISI, SCOPUS |