Assessment of Microbial Community Composition Changes in the Presence of Phytoplankton-Derived Exudates in Two Contrasting Areas from Chilean Patagonia

Valdés-Castro, Valentina; Gonzalez, Humberto; Giesecke, Ricardo; Fernandez, Camila.; Molina, Veronica

Keywords: phytoplankton, organic matter, patagonian fjords, microbial community composition

Abstract

Patagonian fjords and channels in southern Chile are heterogeneous ecosystems characterized by the interaction of estuarine and marine waters influencing physical-chemical conditions and biological assemblages. Besides salinity, microbial communities from estuarine and marine origin are naturally subjected to changing organic matter quality and variable nutrient concentrations. In this study, we tackle the response of the bacterial community from estuarine and marine origins associated with two size classes (<0.7 μm and <1.6 μm) to the addition of sterile phytoplankton-derived exudates (PDE) compared to control conditions (no addition). Picoplanktonic cell abundance, active bacterial composition analyzed through 16S rRNA sequencing, changes in dissolved organic carbon (DOC) and δ13C were determined over 5 and 15 days after PDE addition. Our results showed that the active marine bacteria were richer and more diverse than their estuarine counterparts, and were dominated by Alphaproteobacteria and Gammaproteobacteria, respectively. PDE addition in both the fractions and the sample origin resulted in an enrichment throughout the incubation of Rhodobacteracea and Cryimorphaceae families, whereas Epsilonproteobacteria (Arcobacteraceae) were mainly favored in the estuarine experiments. Picoplankton abundance increased with time, but higher cell numbers were found in PDE treatments in both size classes (>2 × 105 cell mL−1). In all the experiments, DOC concentration decreased after eight days of incubation, but shifts in δ13C organic matter composition were greater in the estuarine experiments. Overall, our results indicate that despite their different origins (estuarine versus marine), microbial communities inhabiting the fjord responded to PDE with a faster effect on marine active bacteria.

Más información

Título de la Revista: DIVERSITY
Editorial: MDPI Open Access Publishing
Fecha de publicación: 2022