A new L-infinity estimate in optimal mass transport
Abstract
Let Ω be a bounded Lipschitz regular open subset of â„d and let μ, ν be two probablity measures on Ω̄. It is well known that if μ = f dx is absolutely continuous, then there exists, for every p > 1, a unique transport map Tp pushing forward μ on ν and which realizes the Monge-Kantorovich distance Wp(μ, ν). In this paper, we establish an L∞ bound for the displacement map Tp x - x which depends only on p, on the shape of Ω and on the essential infimum of the density f. © 2007 American Mathematical Society.
Más información
Título según WOS: | A new L-infinity estimate in optimal mass transport |
Título según SCOPUS: | A new L8estimate in optimal mass transport |
Título de la Revista: | PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY |
Volumen: | 135 |
Número: | 11 |
Editorial: | AMER MATHEMATICAL SOC |
Fecha de publicación: | 2007 |
Página de inicio: | 3525 |
Página final: | 3535 |
Idioma: | English |
URL: | http://www.ams.org/journal-getitem?pii=S0002-9939-07-08877-6 |
DOI: |
10.1090/S0002-9939-07-08877-6 |
Notas: | ISI, SCOPUS |