Group actions on Jacobian varieties
Abstract
Consider a finite group G acting on a Riemann surface S, and the associated branched Galois cover πG : S → Y = S/G. We introduce the concept of geometric signature for the action of G, and we show that it captures much information: the geometric structure of the lattice of intermediate covers, the isotypical decomposition of the rational representation of the group G acting on the Jacobian variety JS of S, and the dimension of the subvarieties of the isogeny decomposition of JS. We also give a version of Riemann's existence theorem, adjusted to the present setting.
Más información
| Título según WOS: | Group actions on Jacobian varieties |
| Título según SCOPUS: | Group actions on Jacobian varieties |
| Título de la Revista: | REVISTA MATEMATICA IBEROAMERICANA |
| Volumen: | 23 |
| Número: | 2 |
| Editorial: | EUROPEAN MATHEMATICAL SOC-EMS |
| Fecha de publicación: | 2007 |
| Página de inicio: | 397 |
| Página final: | 420 |
| Idioma: | English |
| Notas: | ISI, SCOPUS |