Criteria and characterizations for spatially isotropic and temporally symmetric matrix-valued covariance functions

Porcu, Emilio; Emery, Xavier; Mery, Nadia

Abstract

We consider spatial matrix-valued isotropic covariance functions in Euclidean spaces and provide a very short proof of a celebrated characterization result proposed by earlier literature. We then provide a characterization theorem to create a bridge between a class of matrix-valued functions and the class of matrix-valued positive semidefinite functions in finite-dimensional Euclidean spaces. We culminate with criteria of the Polya type for matrix-valued isotropic covariance functions, and with a generalization of Schlather's class of multivariate spatial covariance functions. We then challenge the problem of matrix-valued space-time covariance functions, and provide a general class that encompasses all the proposals on the Gneiting nonseparable class provided by earlier literature.

Más información

Título según WOS: Criteria and characterizations for spatially isotropic and temporally symmetric matrix-valued covariance functions
Título de la Revista: COMPUTATIONAL & APPLIED MATHEMATICS
Volumen: 41
Número: 5
Editorial: SPRINGER HEIDELBERG
Fecha de publicación: 2022
DOI:

10.1007/s40314-022-01930-2

Notas: ISI