Stable solutions for the bilaplacian with exponential nonlinearity
Abstract
Let λ* > O denote the largest possible value of λ such that {Δ 2u = λe u in B, u = ∂u/∂n = 0 on ∂B} has a solution, where B is the unit ball in &Rdbl; N and n is the exterior unit normal vector. We show that for λ = λ* this problem possesses a unique weak solution u*. We prove that u* is smooth if N ≤ 12 and singular when N ≥ 13, in which case u*(r) = - 4logr + log(8(N -2)(N 4)/λ*) + o(1) as r → 0. We also consider the problem with general constant Dirichlet boundary conditions. © 2007 Society for Industrial and Applied Mathematics.
Más información
Título según WOS: | Stable solutions for the bilaplacian with exponential nonlinearity |
Título según SCOPUS: | Stable solutions for the bilaplacian with exponential nonlinearity |
Título de la Revista: | SIAM JOURNAL ON MATHEMATICAL ANALYSIS |
Volumen: | 39 |
Número: | 2 |
Editorial: | SIAM PUBLICATIONS |
Fecha de publicación: | 2007 |
Página de inicio: | 565 |
Página final: | 592 |
Idioma: | English |
URL: | http://epubs.siam.org/doi/abs/10.1137/060665579 |
DOI: |
10.1137/060665579 |
Notas: | ISI, SCOPUS |