An exact bounded perfectly matched layer for time-harmonic scattering problems
Abstract
The aim of this paper is to introduce an "exact" bounded perfectly matched layer (PML) for the scalar Helmholtz equation. This PML is based on using a nonintegrable absorbing function. "Exactness" must be understood in the sense that this technique allows exact recovering of the solution to time-harmonic scattering problems in unbounded domains. In spite of the singularity of the absorbing function, the coupled fluid/PML problem is well posed when the solution is sought in an adequate weighted Sobolev space. The resulting weak formulation can be numerically solved by using standard finite elements. The high accuracy of this approach is numerically demonstrated as compared with a classical PML technique. © 2007 Society for Industrial and Applied Mathematics.
Más información
Título según WOS: | An exact bounded perfectly matched layer for time-harmonic scattering problems |
Título según SCOPUS: | An exact bounded perfectly matched layer for time-harmonic scattering problems |
Título de la Revista: | SIAM JOURNAL ON SCIENTIFIC COMPUTING |
Volumen: | 30 |
Número: | 1 |
Editorial: | SIAM PUBLICATIONS |
Fecha de publicación: | 2007 |
Página de inicio: | 312 |
Página final: | 338 |
Idioma: | English |
URL: | http://epubs.siam.org/doi/abs/10.1137/060670912 |
DOI: |
10.1137/060670912 |
Notas: | ISI, SCOPUS |