Rotation topological factors of minimal Z(d)-actions on the Cantor set

Cortez, MI; Gambaudo, JM; Maass A.

Abstract

In this paper we study conditions under which a free minimal ℤd-action on the Cantor set is a topological extension of the action of d rotations, either on the product Td of d 1-tori or on a single 1-torus T1. We extend the notion of linearly recurrent systems defined for ℤ-actions on the Cantor set to ℤd-actions, and we derive in this more general setting a necessary and sufficient condition, which involves a natural combinatorial data associated with the action, allowing the existence of a rotation topological factor of one of these two types. © 2006 American Mathematical Society.

Más información

Título según WOS: Rotation topological factors of minimal Z(d)-actions on the Cantor set
Título según SCOPUS: Rotation topological factors of minimal Zd-actions on the cantor set
Título de la Revista: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY
Volumen: 359
Número: 5
Editorial: AMER MATHEMATICAL SOC
Fecha de publicación: 2007
Página de inicio: 2305
Página final: 2315
Idioma: English
URL: http://www.ams.org/journal-getitem?pii=S0002-9947-06-04027-X
DOI:

10.1090/S0002-9947-06-04027-X

Notas: ISI, SCOPUS