Heisenberg evolution of quantum observables represented by unbounded operators

Mora, CM

Abstract

This paper deals with open quantum systems. In particular, we focus on the adjoint quantum master equations with initial conditions given by unbounded operators. Examples of this type of initial data are the position and momentum operators of quantum oscillators and the occupation number operator in many-body particle systems. The article establishes the existence and uniqueness of solutions of the operator equations governing the motion of unbounded observables under the Born-Markov approximations. To this end, we develop the relation between operator evolution equations arising in quantum mechanics and stochastic evolutions equations of Schrödinger type. Furthermore, we examine quantum dynamical semigroup properties of the Heisenberg evolutions of general classes of observables. © 2008 Elsevier Inc. All rights reserved.

Más información

Título según WOS: Heisenberg evolution of quantum observables represented by unbounded operators
Título según SCOPUS: Heisenberg evolution of quantum observables represented by unbounded operators
Título de la Revista: JOURNAL OF FUNCTIONAL ANALYSIS
Volumen: 255
Número: 12
Editorial: ACADEMIC PRESS INC ELSEVIER SCIENCE
Fecha de publicación: 2008
Página de inicio: 3249
Página final: 3273
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0022123608004291
DOI:

10.1016/j.jfa.2008.10.006

Notas: ISI, SCOPUS