Maximal regularity for perturbed integral equations on periodic Lebesgue spaces

Lizama C.; Poblete V.

Abstract

We characterize the maximal regularity of periodic solutions for an additive perturbed integral equation with infinite delay in the vector-valued Lebesgue spaces. Our method is based on operator-valued Fourier multipliers. We also study resonances, characterizing the existence of solutions in terms of a compatibility condition on the forcing term. © 2008 Elsevier Inc. All rights reserved.

Más información

Título según WOS: Maximal regularity for perturbed integral equations on periodic Lebesgue spaces
Título según SCOPUS: Maximal regularity for perturbed integral equations on periodic Lebesgue spaces
Título de la Revista: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
Volumen: 348
Número: 2
Editorial: ACADEMIC PRESS INC ELSEVIER SCIENCE
Fecha de publicación: 2008
Página de inicio: 775
Página final: 786
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0022247X08007762
DOI:

10.1016/j.jmaa.2008.07.075

Notas: ISI, SCOPUS