A counterexample to a conjecture by De Giorgi in large dimensions

Del Pino M.; Kowalczyk M.; Wei, JC

Abstract

We consider the Allen-Cahn equationΔ u + u (1 - u2) = 0 in RN . A celebrated conjecture by E. De Giorgi (1978) states that if u is a bounded solution to this problem such that ∂xN u > 0, then the level sets {u = λ}, λ ∈ R, must be hyperplanes at least if N ≤ 8. We construct a family of solutions which shows that this statement does not hold true for N ≥ 9. To cite this article: M. del Pino et al., C. R. Acad. Sci. Paris, Ser. I 346 (2008). © 2008 Académie des sciences.

Más información

Título según WOS: A counterexample to a conjecture by De Giorgi in large dimensions
Título según SCOPUS: A counterexample to a conjecture by De Giorgi in large dimensions
Título de la Revista: COMPTES RENDUS MATHEMATIQUE
Volumen: 346
Número: 23-24
Editorial: ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
Fecha de publicación: 2008
Página de inicio: 1261
Página final: 1266
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S1631073X08003026
DOI:

10.1016/j.crma.2008.10.010

Notas: ISI, SCOPUS