Almost automorphic mild solutions to fractional differential equations
Abstract
We introduce the concept of α-resolvent families to prove the existence of almost automorphic mild solutions to the differential equation Dt α u (t) = A u (t) + tn f (t), 1 ≤ α ≤ 2, n ∈ Z+ considered in a Banach space X, where f : R → X is almost automorphic. We also prove the existence and uniqueness of an almost automorphic mild solution of the semilinear equation Dt α u (t) = A u (t) + f (t, u (t)), 1 ≤ α ≤ 2 assuming f (t, x) is almost automorphic in t for each x ∈ X, satisfies a global Lipschitz condition and takes values on X. Finally, we prove also the existence and uniqueness of an almost automorphic mild solution of the semilinear equation Dt α u (t) = A u (t) + f (t, u (t), u′ (t)), 1 ≤ α ≤ 2, under analogous conditions as in the previous case. © 2007 Elsevier Ltd. All rights reserved.
Más información
Título según WOS: | Almost automorphic mild solutions to fractional differential equations |
Título según SCOPUS: | Almost automorphic mild solutions to fractional differential equations |
Título de la Revista: | NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS |
Volumen: | 69 |
Número: | 11 |
Editorial: | PERGAMON-ELSEVIER SCIENCE LTD |
Fecha de publicación: | 2008 |
Página de inicio: | 3692 |
Página final: | 3705 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0362546X07006803 |
DOI: |
10.1016/j.na.2007.10.004 |
Notas: | ISI, SCOPUS |