Almost automorphic mild solutions to fractional differential equations

Araya D.; Lizama C.

Abstract

We introduce the concept of α-resolvent families to prove the existence of almost automorphic mild solutions to the differential equation Dt α u (t) = A u (t) + tn f (t), 1 ≤ α ≤ 2, n ∈ Z+ considered in a Banach space X, where f : R → X is almost automorphic. We also prove the existence and uniqueness of an almost automorphic mild solution of the semilinear equation Dt α u (t) = A u (t) + f (t, u (t)), 1 ≤ α ≤ 2 assuming f (t, x) is almost automorphic in t for each x ∈ X, satisfies a global Lipschitz condition and takes values on X. Finally, we prove also the existence and uniqueness of an almost automorphic mild solution of the semilinear equation Dt α u (t) = A u (t) + f (t, u (t), u′ (t)), 1 ≤ α ≤ 2, under analogous conditions as in the previous case. © 2007 Elsevier Ltd. All rights reserved.

Más información

Título según WOS: Almost automorphic mild solutions to fractional differential equations
Título según SCOPUS: Almost automorphic mild solutions to fractional differential equations
Título de la Revista: NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS
Volumen: 69
Número: 11
Editorial: PERGAMON-ELSEVIER SCIENCE LTD
Fecha de publicación: 2008
Página de inicio: 3692
Página final: 3705
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0362546X07006803
DOI:

10.1016/j.na.2007.10.004

Notas: ISI, SCOPUS