Positive definite almost regular ternary quadratic forms over totally real number fields

Chan, WK; Icaza, MI

Abstract

Let F be a totally real number field and let be the ring of integers in F. A totally positive quadratic form f over is said to be almost regular with k exceptions if f represents all but k elements in F that are represented by f locally everywhere. In this paper, we show that for a fixed positive integer k, there are only finitely many similarity classes of positive definite almost regular ternary quadratic forms over with at most k exceptions. This generalizes the corresponding finiteness result for positive definite ternary quadratic forms over by Watson (PhD Thesis, University College, London, 1953; Mathematika 1 (1954) 104-110). © 2008 London Mathematical Society.

Más información

Título según WOS: Positive definite almost regular ternary quadratic forms over totally real number fields
Título según SCOPUS: Positive definite almost regular ternary quadratic forms over totally real number fields
Título de la Revista: BULLETIN OF THE LONDON MATHEMATICAL SOCIETY
Volumen: 40
Número: 6
Editorial: Wiley
Fecha de publicación: 2008
Página de inicio: 1025
Página final: 1037
Idioma: English
URL: http://blms.oxfordjournals.org/cgi/doi/10.1112/blms/bdn085
DOI:

10.1112/blms/bdn085

Notas: ISI, SCOPUS