Positive definite almost regular ternary quadratic forms over totally real number fields
Abstract
Let F be a totally real number field and let be the ring of integers in F. A totally positive quadratic form f over is said to be almost regular with k exceptions if f represents all but k elements in F that are represented by f locally everywhere. In this paper, we show that for a fixed positive integer k, there are only finitely many similarity classes of positive definite almost regular ternary quadratic forms over with at most k exceptions. This generalizes the corresponding finiteness result for positive definite ternary quadratic forms over by Watson (PhD Thesis, University College, London, 1953; Mathematika 1 (1954) 104-110). © 2008 London Mathematical Society.
Más información
| Título según WOS: | Positive definite almost regular ternary quadratic forms over totally real number fields |
| Título según SCOPUS: | Positive definite almost regular ternary quadratic forms over totally real number fields |
| Título de la Revista: | BULLETIN OF THE LONDON MATHEMATICAL SOCIETY |
| Volumen: | 40 |
| Número: | 6 |
| Editorial: | Wiley |
| Fecha de publicación: | 2008 |
| Página de inicio: | 1025 |
| Página final: | 1037 |
| Idioma: | English |
| URL: | http://blms.oxfordjournals.org/cgi/doi/10.1112/blms/bdn085 |
| DOI: |
10.1112/blms/bdn085 |
| Notas: | ISI, SCOPUS |