Stability properties for solution operators
Abstract
We study stability properties of certain evolution equations including the fractional Cauchy problem. Under some spectral assumptions these equations are governed either by a resolvent or a regularized resolvent or a k-convoluted semigroup. We investigate the long time behavior for bounded solutions by a direct application of the ergodic theorems for regularized resolvents of Lizama and Prado (J. Approx. Theory 122:42-61, 2003), Prado (Semigroup Forum 73:243-252, 2006). We apply our results to the qualitative study of the fractional diffusion-wave equation on L p (a). © 2008 Springer Science+Business Media, LLC.
Más información
| Título según WOS: | Stability properties for solution operators |
| Título según SCOPUS: | Stability properties for solution operators |
| Título de la Revista: | SEMIGROUP FORUM |
| Volumen: | 77 |
| Número: | 3 |
| Editorial: | Springer |
| Fecha de publicación: | 2008 |
| Página de inicio: | 456 |
| Página final: | 462 |
| Idioma: | English |
| URL: | http://link.springer.com/10.1007/s00233-008-9071-7 |
| DOI: |
10.1007/s00233-008-9071-7 |
| Notas: | ISI, SCOPUS |