A Multiplicity Result for the p-Laplacian Involving a Parameter
Abstract
We study existence and multiplicity of positive solutions for the following problem {-Δp u = λ f(x,u) in Ω u = 0 on ∂Ω' where λ is a positive parameter, Ω is a bounded and smooth domain in â„N, p ∈ (1, N), f(x,t) behaves, for instance, like o(|t|p-1) near 0 and +∞, and satisfies some further properties. In particular, our assumptions allow us to consider both positive and sign changing nonlinearitites f, the latter describing logistic as well as reaction-diffusion processes. By using sub- and supersolutions and variational arguments, we prove that there exists a positive constant λ such that the above problem has at least two positive solutions for λ > λ, at least one positive solution for λ = λ and no solution for λ < λ. An important rôle plays the fact that local minimizers of certain functionals in the C1-topology are also minimizers in W0 1,p(Ω). We give a short new proof of this known result. © 2008 Birkhaueser.
Más información
Título según WOS: | A Multiplicity Result for the p-Laplacian Involving a Parameter |
Título según SCOPUS: | A multiplicity result for the p-Laplacian involving a parameter |
Título de la Revista: | ANNALES HENRI POINCARE |
Volumen: | 9 |
Número: | 7 |
Editorial: | SPRINGER BASEL AG |
Fecha de publicación: | 2008 |
Página de inicio: | 1371 |
Página final: | 1386 |
Idioma: | English |
URL: | http://link.springer.com/10.1007/s00023-008-0386-4 |
DOI: |
10.1007/s00023-008-0386-4 |
Notas: | ISI, SCOPUS |