Discovering Novel Causal Patterns From Biomedical Natural-Language Texts Using Bayesian Nets

Atkinson J.; Rivas, A

Abstract

Most of the biomedicine text mining approaches do not deal with specific cause - effect patterns that may explain the discoveries. In order to fill this gap, this paper proposes an effective new model for text mining from biomedicine literature that helps to discover cause - effect hypotheses related to diseases, drugs, etc. The supervised approach combines Bayesian inference methods with natural-language processing techniques in order to generate simple and interesting patterns. The results of applying the model to biomedicine text databases and its comparison with other state-of-the-art methods are also discussed. © 2008 IEEE.

Más información

Título según WOS: Discovering Novel Causal Patterns From Biomedical Natural-Language Texts Using Bayesian Nets
Título según SCOPUS: Discovering novel causal patterns from biomedical natural-language texts using Bayesian nets
Título de la Revista: IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE
Volumen: 12
Número: 6
Editorial: IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Fecha de publicación: 2008
Página de inicio: 714
Página final: 722
Idioma: English
URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4472920
DOI:

10.1109/TITB.2008.920793

Notas: ISI, SCOPUS