Characterization of Mobility Patterns With a Hierarchical Clustering of Origin-Destination GPS Taxi Data
Abstract
Clustering taxi data is commonly used to understand spatial patterns of urban mobility. In this paper, we propose a new clustering model called Origin-Destination-means (OD-means). OD-means is a hierarchical adaptive k-means algorithm based on origin-destination pairs. In the first layer of the hierarchy, the clusters are separated automatically based on the variation of the within-cluster distance of each cluster until convergence. The second layer of the hierarchy corresponds to the sub clustering process of small clusters based on the distance between the origin and destination of each cluster. The algorithm is tested on a large data set of taxi GPS data from Santiago, Chile, and compared to other clustering algorithms. In contrast to them, our proposed model is capable of detecting general and local travel patterns in the city due to its hierarchical structure.
Más información
Título según WOS: | Characterization of Mobility Patterns With a Hierarchical Clustering of Origin-Destination GPS Taxi Data |
Título de la Revista: | IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS |
Volumen: | 23 |
Número: | 8 |
Editorial: | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
Fecha de publicación: | 2022 |
Página de inicio: | 12700 |
Página final: | 12710 |
DOI: |
10.1109/TITS.2021.3116963 |
Notas: | ISI |