Need to Meet Investment Goals? Track Synthetic Indexes with the SDDP Method

Reus, Lorenzo; Prado, Rodolfo

Abstract

This work presents a novel application of the Stochastic Dual Dynamic Problem (SDDP) to large-scale asset allocation. We construct a model that delivers allocation policies based on how the portfolio performs with respect to user-defined (synthetic) indexes, and implement it in a SDDP open-source package. Based on US economic cycles and ETF data, we generate Markovian regime-dependent returns to solve an instance of multiple assets and 28 time periods. Results show our solution outperforms its benchmark, in both profitability and tracking error.

Más información

Título según WOS: Need to Meet Investment Goals? Track Synthetic Indexes with the SDDP Method
Título de la Revista: COMPUTATIONAL ECONOMICS
Volumen: 60
Número: 1
Editorial: Springer
Fecha de publicación: 2022
Página de inicio: 47
Página final: 69
DOI:

10.1007/s10614-021-10133-6

Notas: ISI